Diffusion-controlled reference material for VOC emissions testing: effect of temperature and humidity.
نویسندگان
چکیده
UNLABELLED A polymethylpentene film loaded with toluene is being developed as a reference material to support the reliable measurement of volatile organic compound emissions from building materials using environmental chambers. Earlier studies included the measurement of the material-phase diffusion coefficient (D) and material/air partition coefficient (K) at 23°C. A fundamental mass-transfer model can then be used to predict toluene emissions from the reference material at 23°C, serving as a reference for validating chamber-measured emission profiles. In this study, the effect of temperature and humidity on performance of the reference material was investigated. Reference material emissions were measured at 10, 23, and 30°C and at different relative humidity (RH) levels. D and K at different temperatures and RH were determined using an independent method. Results showed that RH does not significantly affect D and K and had no effect on emissions. However, emissions increased substantially at elevated temperatures due to the relationship between D and temperature. A statistical analysis shows good agreement between model-predicted and measured gas-phase concentrations, indicating that the model can accurately predict emission profiles as a function of temperature. The reference material can therefore be applied to a wide range of emission chamber testing conditions. PRACTICAL IMPLICATIONS A reference material with a dynamic emissions profile was previously developed as a validation tool for emission testing in chambers. This follow-up study investigated the effect of temperature and humidity on the performance of the reference material. The results show that the reference material can be used to calibrate and validate chamber testing procedures over a broad range of environmental conditions.
منابع مشابه
Diffusion-controlled reference material for VOC emissions testing: proof of concept.
UNLABELLED Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different lab...
متن کاملDiffusion-controlled toluene reference material for VOC emissions testing: international interlaboratory study.
UNLABELLED The measurement of volatile organic compound (VOC) emissions from building products and materials by manufacturers and testing laboratories, and the use of the test results for labeling programs, continue to expand. One issue that hinders wide acceptance for chamber product testing is the lack of a reference material to validate test chamber performance. To meet this need, the Nation...
متن کاملModeling Diffusion-controlled Emissions of Volatile Organic Compounds from Building Materials
The adverse effects of contaminated outdoor air have been recognized and subject to control for many years. More recently environmental engineers and health professionals have become cognizant of the hazards associated with contaminated indoor air. It is now understood that contaminated indoor air negatively impacts human health, worker productivity, and physical property. Volatile organic comp...
متن کاملInfluence of Precision of Emission Characteristic Parameters on Model Prediction Error of VOCs/Formaldehyde from Dry Building Material
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the...
متن کاملEvaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests
In this study, the impact factors of temperature, relative humidity (RH), air exchange rate, and volatile organic compound (VOC) properties on the VOC (toluene, n-butyl acetate, ethylbenzene, and m,p-xylene) specific emission rates (SERs) and concentrations from wooden flooring were investigated by chamber test for 8 days. The tested wood in this study is not common solid wood, but composite wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indoor air
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2014